Big Data Optimization: Recent Developments and Challenges

de

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2016-05-26

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
168,79

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.
Pages
487 pages
Collection
Studies in Big Data
Parution
2016-05-26
Marque
Springer
EAN papier
9783319302638
EAN EPUB
9783319302652

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
48
Taille du fichier
7813 Ko
Prix
168,79 €