Spatio-Temporal Recommendation in Social Media

de

,

Éditeur :

Springer


Collection :

SpringerBriefs in Computer Science

Paru le : 2016-05-19

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book covers the major fundamentals of and the latest research on next-generation spatio-temporal recommendation systems in social media. It begins by describing the emerging characteristics of social media in the era of mobile internet, and explores the limitations to be found in current recommender techniques. The book subsequently presents a series of latent-class user models to simulate users’ behaviors in decision-making processes, which effectively overcome the challenges arising from temporal dynamics of users’ behaviors, user interest drift over geographical regions, data sparsity and cold start.  Based on these well designed user models, the book develops effective multi-dimensional index structures such as Metric-Tree, and proposes efficient top-k retrieval algorithms to accelerate the process of online recommendation and support real-time recommendation. In addition, it offers methodologies and techniques for evaluating both the effectiveness and efficiency of spatio-temporal recommendation systems in social media. The book will appeal to a broad readership, from researchers and developers to undergraduate and graduate students.  
Pages
114 pages
Collection
SpringerBriefs in Computer Science
Parution
2016-05-19
Marque
Springer
EAN papier
9789811007477
EAN EPUB
9789811007484

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
1731 Ko
Prix
52,74 €