Hydrological Data Driven Modelling

A Case Study Approach de

,

Éditeur :

Springer


Collection :

Earth Systems Data and Models

Paru le : 2014-11-03

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
105,49

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.
Pages
250 pages
Collection
Earth Systems Data and Models
Parution
2014-11-03
Marque
Springer
EAN papier
9783319092348
EAN EPUB
9783319092355

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
5294 Ko
Prix
105,49 €