High-Utility Pattern Mining

Theory, Algorithms and Applications de

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2019-01-18

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data.The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns.

 
Pages
337 pages
Collection
Studies in Big Data
Parution
2019-01-18
Marque
Springer
EAN papier
9783030049201
EAN PDF
9783030049218

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
12718 Ko
Prix
94,94 €
EAN EPUB
9783030049218

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
30853 Ko
Prix
94,94 €