Predictive Maintenance in Dynamic Systems

Advanced Methods, Decision Support Tools and Real-World Applications de

,

Éditeur :

Springer


Paru le : 2019-02-28

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
181,49

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet ofThings. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.  



Pages
567 pages
Collection
n.c
Parution
2019-02-28
Marque
Springer
EAN papier
9783030056445
EAN PDF
9783030056452

Informations sur l'ebook
Nombre pages copiables
5
Nombre pages imprimables
56
Taille du fichier
18074 Ko
Prix
181,49 €
EAN EPUB
9783030056452

Informations sur l'ebook
Nombre pages copiables
5
Nombre pages imprimables
56
Taille du fichier
69693 Ko
Prix
181,49 €

Suggestions personnalisées