Stream Data Mining: Algorithms and Their Probabilistic Properties

de

, ,

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2019-03-16

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
168,79

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book presents a unique approach to stream data mining. Unlike the vast majority of previous approaches, which are largely based on heuristics, it highlights methods and algorithms that are mathematically justified. First, it describes how to adapt static decision trees to accommodate data streams; in this regard, new splitting criteria are developed to guarantee that they are asymptotically equivalent to the classical batch tree. Moreover, new decision trees are designed, leading to the original concept of hybrid trees. In turn, nonparametric techniques based on Parzen kernels and orthogonal series are employed to address concept drift in the problem of non-stationary regressions and classification in a time-varying environment. Lastly, an extremely challenging problem that involves designing ensembles and automatically choosing their sizes is described and solved. Given its scope, the book is intended for a professional audience of researchers and practitioners who dealwith stream data, e.g. in telecommunication, banking, and sensor networks.
Pages
330 pages
Collection
Studies in Big Data
Parution
2019-03-16
Marque
Springer
EAN papier
9783030139612
EAN PDF
9783030139629

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
11110 Ko
Prix
168,79 €
EAN EPUB
9783030139629

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
26307 Ko
Prix
168,79 €