Deep Learning Classifiers with Memristive Networks

Theory and Applications de

Éditeur :

Springer


Collection :

Modeling and Optimization in Science and Technologies

Paru le : 2019-04-08

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
168,79

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
Pages
213 pages
Collection
Modeling and Optimization in Science and Technologies
Parution
2019-04-08
Marque
Springer
EAN papier
9783030145224
EAN PDF
9783030145248

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
9718 Ko
Prix
168,79 €
EAN EPUB
9783030145248

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
34959 Ko
Prix
168,79 €