Adaptive Resonance Theory in Social Media Data Clustering

Roles, Methodologies, and Applications de

, ,

Éditeur :

Springer


Collection :

Advanced Information and Knowledge Processing

Paru le : 2019-04-30

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:
Basic knowledge (data & challenges) on social media analytics
Clustering as a fundamental technique for unsupervised knowledge discovery and data mining
A class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering 
Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domain


Adaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction.
It presents initiatives on the mathematical demonstration of ART’s learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks.
Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:

How to process big streams of multimedia data?
How to analyze social networks with heterogeneous data?
How to understand a user’s interests by learning from online posts and behaviors?
How to create a personalized search engine by automatically indexing and searching multimodal information resources?          


.

       

Pages
190 pages
Collection
Advanced Information and Knowledge Processing
Parution
2019-04-30
Marque
Springer
EAN papier
9783030029845
EAN PDF
9783030029852

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
19
Taille du fichier
6144 Ko
Prix
94,94 €
EAN EPUB
9783030029852

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
19
Taille du fichier
16097 Ko
Prix
94,94 €