Clustering Methodology for Symbolic Data

de

,

Éditeur :

Wiley


Collection :

Wiley Series in Computational Statistics

Paru le : 2019-08-20

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
79,07

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Covers everything readers need to know about clustering methodology for symbolic data—including new methods and headings—while providing a focus on multi-valued list data, interval data and histogram data
This book presents all of the latest developments in the field of clustering methodology for symbolic data—paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses.
Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering.  Provides new classification methodologies for histogram valued data reaching across many fields in data science Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data Considers classification models by dynamical clustering Features a supporting website hosting relevant data sets 
Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.
Pages
352 pages
Collection
Wiley Series in Computational Statistics
Parution
2019-08-20
Marque
Wiley
EAN papier
9780470713938
EAN PDF
9781119010388

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
352
Taille du fichier
4506 Ko
Prix
79,07 €
EAN EPUB
9781119010395

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
352
Taille du fichier
20050 Ko
Prix
79,07 €