Advances in Domain Adaptation Theory

de

Éditeur :

Iste Press - Elsevier


Paru le : 2019-08-23

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈 ebook sans DRM
Lecture en ligne (streaming)
116,05

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, including sections on Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and Stability based bounds. In addition, the book explains domain adaptation problem and describes the four major families of theoretical results that exist in the literature, including the Divergence based bounds. Next, PAC-Bayesian bounds are discussed, including the original PAC-Bayesian bounds for domain adaptation and their updated version. Additional sections present generalization guarantees based on the robustness and stability properties of the learning algorithm. - Gives an overview of current results on transfer learning - Focuses on the adaptation of the field from a theoretical point-of-view - Describes four major families of theoretical results in the literature - Summarizes existing results on adaptation in the field - Provides tips for future research
Pages
208 pages
Collection
n.c
Parution
2019-08-23
Marque
Iste Press - Elsevier
EAN papier
9781785482366
EAN PDF
9780081023471

Informations sur l'ebook
Nombre pages copiables
20
Nombre pages imprimables
20
Taille du fichier
9933 Ko
Prix
116,05 €
EAN EPUB SANS DRM
9780081023471

Informations sur l'ebook
Prix
116,05 €

Suggestions personnalisées