Cause Effect Pairs in Machine Learning

de

, ,

Éditeur :

Springer


Collection :

The Springer Series on Challenges in Machine Learning

Paru le : 2019-10-22

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (“Does altitude cause a change in atmospheric pressure, or vice versa?”) is here cast as a binary classification problem, to be tackled by machine learning algorithms.  Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a “causal mechanism”, in the sense that the values of one variable may have been generated from the values of the other.  


This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.



Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.






Pages
372 pages
Collection
The Springer Series on Challenges in Machine Learning
Parution
2019-10-22
Marque
Springer
EAN papier
9783030218096
EAN PDF
9783030218102

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
37
Taille du fichier
12206 Ko
Prix
94,94 €
EAN EPUB
9783030218102

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
37
Taille du fichier
40786 Ko
Prix
94,94 €