Smart Meter Data Analytics

Electricity Consumer Behavior Modeling, Aggregation, and Forecasting de

, , ,

Éditeur :

Springer


Paru le : 2020-02-24

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
95,39

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.

Pages
293 pages
Collection
n.c
Parution
2020-02-24
Marque
Springer
EAN papier
9789811526237
EAN PDF
9789811526244

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
13005 Ko
Prix
95,39 €
EAN EPUB
9789811526244

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
33280 Ko
Prix
95,39 €

Suggestions personnalisées