Neural Control of Renewable Electrical Power Systems

de

,

Éditeur :

Springer


Collection :

Studies in Systems, Decision and Control

Paru le : 2020-05-09

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book presents advanced control techniques that use neural networks to deal with grid disturbances in the context renewable energy sources, and to enhance low-voltage ride-through capacity, which is a vital in terms of ensuring that the integration of distributed energy resources into the electrical power network. It presents modern control algorithms based on neural identification for different renewable energy sources, such as wind power, which uses doubly-fed induction generators, solar power, and battery banks for storage. It then discusses the use of the proposed controllers to track doubly-fed induction generator dynamics references: DC voltage, grid power factor, and stator active and reactive power, and the use of simulations to validate their performance. Further, it addresses methods of testing low-voltage ride-through capacity enhancement in the presence of grid disturbances, as well as the experimental validation of the controllers under both normal and abnormalgrid conditions. The book then describes how the proposed control schemes are extended to control a grid-connected microgrid, and the use of an IEEE 9-bus system to evaluate their performance and response in the presence of grid disturbances. Lastly, it examines the real-time simulation of the entire system under normal and abnormal conditions using an Opal-RT simulator.
Pages
206 pages
Collection
Studies in Systems, Decision and Control
Parution
2020-05-09
Marque
Springer
EAN papier
9783030474423
EAN PDF
9783030474430

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
44534 Ko
Prix
94,94 €
EAN EPUB
9783030474430

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
32430 Ko
Prix
94,94 €