Data Science and Productivity Analytics

de

, ,

Éditeur :

Springer


Collection :

International Series in Operations Research & Management Science

Paru le : 2020-05-23

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of ‘productivity analysis/data envelopment analysis’ and ‘data science/big data’. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.
Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.
Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis.
Pages
439 pages
Collection
International Series in Operations Research & Management Science
Parution
2020-05-23
Marque
Springer
EAN papier
9783030433833
EAN PDF
9783030433840

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
43
Taille du fichier
10332 Ko
Prix
147,69 €
EAN EPUB
9783030433840

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
43
Taille du fichier
37816 Ko
Prix
147,69 €