Large-scale Graph Analysis: System, Algorithm and Optimization

de

, ,

Éditeur :

Springer


Collection :

Big Data Management

Paru le : 2020-07-01

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.
This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms.

Pages
146 pages
Collection
Big Data Management
Parution
2020-07-01
Marque
Springer
EAN papier
9789811539275
EAN PDF
9789811539282

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
14
Taille du fichier
5898 Ko
Prix
147,69 €
EAN EPUB
9789811539282

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
14
Taille du fichier
12012 Ko
Prix
147,69 €