Attractor Dimension Estimates for Dynamical Systems: Theory and Computation

Dedicated to Gennady Leonov de

,

Éditeur :

Springer


Collection :

Emergence, Complexity and Computation

Paru le : 2020-07-02

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
220,49

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.
Pages
545 pages
Collection
Emergence, Complexity and Computation
Parution
2020-07-02
Marque
Springer
EAN papier
9783030509866
EAN PDF
9783030509873

Informations sur l'ebook
Nombre pages copiables
5
Nombre pages imprimables
54
Taille du fichier
13066 Ko
Prix
220,49 €
EAN EPUB
9783030509873

Informations sur l'ebook
Nombre pages copiables
5
Nombre pages imprimables
54
Taille du fichier
58522 Ko
Prix
220,49 €