Statistical Mechanics of Hamiltonian Systems with Bounded Kinetic Terms

An Insight into Negative Temperature de

Éditeur :

Springer


Collection :

Springer Theses

Paru le : 2020-08-20

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Recent experimental evidence about the possibility of "absolute negative temperature" states in physical systems has triggered a stimulating debate about the consistency of such a concept from the point of view of Statistical Mechanics. It is not clear whether the usual results of this field can be safely extended to negative-temperature states; some authors even propose fundamental modifications to the Statistical Mechanics formalism, starting with the very definition of entropy, in order to avoid the occurrence of negative values of the temperature tout-court.


The research presented in this thesis aims to shed some light on this controversial topic. To this end, a particular class of Hamiltonian systems with bounded kinetic terms, which can assume negative temperature, is extensively studied, both analytically and numerically. Equilibrium and out-of-equilibrium properties of this kind of system are investigated, reinforcing the overall picture that the introduction of negative temperature does not lead to any contradiction or paradox.  

Pages
133 pages
Collection
Springer Theses
Parution
2020-08-20
Marque
Springer
EAN papier
9783030511692
EAN PDF
9783030511708

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
3768 Ko
Prix
94,94 €
EAN EPUB
9783030511708

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
14858 Ko
Prix
94,94 €