Advancing Parametric Optimization

On Multiparametric Linear Complementarity Problems with Parameters in General Locations de

Éditeur :

Springer


Collection :

SpringerBriefs in Optimization

Paru le : 2021-01-21

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
68,56

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters.The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms
Pages
113 pages
Collection
SpringerBriefs in Optimization
Parution
2021-01-21
Marque
Springer
EAN papier
9783030618209
EAN PDF
9783030618216

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
2079 Ko
Prix
68,56 €
EAN EPUB
9783030618216

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
5980 Ko
Prix
68,56 €