Structural Health Monitoring by Time Series Analysis and Statistical Distance Measures

de

Éditeur :

Springer


Collection :

SpringerBriefs in Applied Sciences and Technology

Paru le : 2021-02-01

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
68,56

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book conducts effective research on data-driven Structural Health Monitoring (SHM), and accordingly presents many novel feature extraction methods by time series analysis and signal processing, to extract reliable damage sensitive features from vibration responses. In this regard, some limitations of time series modeling are dealt with. For decision-making, innovative distance-based novelty detection techniques are presented to detect, locate, and quantify different damage scenarios. The performance of the presented methods is demonstrated via laboratory and full-scale structures along with several comparative studies. The main target audience of the book includes scholars, graduate students working on SHM via statistical pattern recognition in terms of feature extraction and classification for damage diagnosis under environmental and operational variations; it would also be beneficial for practicing engineers whose work involves these topics.
Pages
136 pages
Collection
SpringerBriefs in Applied Sciences and Technology
Parution
2021-02-01
Marque
Springer
EAN papier
9783030662585
EAN PDF
9783030662592

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
5458 Ko
Prix
68,56 €
EAN EPUB
9783030662592

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
12585 Ko
Prix
68,56 €