Modern Optimization with R

de

Éditeur :

Springer


Collection :

Use R!

Paru le : 2021-07-30

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
89,66

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The goal of this book is to gather in a single work the most relevant concepts related in optimization methods, showing how such theories and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e.g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in computer science, information technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R.


This new edition integrates the latest R packages through text and code examples. It also discusses new topics, such as: the impact of artificial intelligence and business analytics in modern optimization tasks; the creation of interactive Web applications; usage of parallel computing; and more modern optimization algorithms (e.g., iterated racing, ant colony optimization, grammatical evolution). 
Pages
254 pages
Collection
Use R!
Parution
2021-07-30
Marque
Springer
EAN papier
9783030728182
EAN PDF
9783030728199

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
4403 Ko
Prix
89,66 €
EAN EPUB
9783030728199

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
25
Taille du fichier
22774 Ko
Prix
89,66 €