Computational Reconstruction of Missing Data in Biological Research

de

Éditeur :

Springer


Collection :

Springer Theses

Paru le : 2021-08-06

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The emerging biotechnologies have significantly advanced the study of biological mechanisms. However, biological data usually contain a great amount of missing information, e.g. missing features, missing labels or missing samples, which greatly limits the extensive usage of the data. In this book, we introduce different types of biological data missing scenarios and propose machine learning models to improve the data analysis, including deep recurrent neural network recovery for feature missings, robust information theoretic learning for label missings and structure-aware rebalancing for minor sample missings. Models in the book cover the fields of imbalance learning, deep learning, recurrent neural network and statistical inference, providing a wide range of references of the integration between artificial intelligence and biology. With simulated and biological datasets, we apply approaches to a variety of biological tasks, including single-cell characterization, genome-wide association studies, medical image segmentations, and quantify the performances in a number of successful metrics.
The outline of this book is as follows. In Chapter 2, we introduce the statistical recovery of missing data features; in Chapter 3, we introduce the statistical recovery of missing labels; in Chapter 4, we introduce the statistical recovery of missing data sample information; finally, in Chapter 5, we summarize the full text and outlook future directions. This book can be used as references for researchers in computational biology, bioinformatics and biostatistics. Readers are expected to have basic knowledge of statistics and machine learning.
Pages
105 pages
Collection
Springer Theses
Parution
2021-08-06
Marque
Springer
EAN papier
9789811630637
EAN PDF
9789811630644

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
10
Taille du fichier
4342 Ko
Prix
52,74 €
EAN EPUB
9789811630644

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
10
Taille du fichier
17736 Ko
Prix
52,74 €