Information Fusion

Machine Learning Methods de

, ,

Éditeur :

Springer


Paru le : 2022-05-04

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

In the big data era, increasing information can be extracted from the same source object or scene. For instance, a person can be verified based on their fingerprint, palm print, or iris information, and a given image can be represented by various types of features, including its texture, color, shape, etc. These multiple types of data extracted from a single object are called multi-view, multi-modal or multi-feature data. Many works have demonstrated that the utilization of all available information at multiple abstraction levels (measurements, features, decisions) helps to obtain more complex, reliable and accurate information and to maximize performance in a range of applications.
This book provides an overview of information fusion technologies, state-of-the-art techniques and their applications. It covers a variety of essential information fusion methods based on different techniques, including sparse/collaborative representation, kernel strategy,Bayesian models, metric learning, weight/classifier methods, and deep learning. The typical applications of these proposed fusion approaches are also presented, including image classification, domain adaptation, disease detection, image restoration, etc.

This book will benefit all researchers, professionals and graduate students in the fields of computer vision, pattern recognition, biometrics applications, etc. Furthermore, it offers a valuable resource for interdisciplinary research.

Pages
260 pages
Collection
n.c
Parution
2022-05-04
Marque
Springer
EAN papier
9789811689758
EAN PDF
9789811689765

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
9574 Ko
Prix
94,94 €
EAN EPUB
9789811689765

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
44718 Ko
Prix
94,94 €

Suggestions personnalisées