Hidden Markov Models and Applications

de

, ,

Éditeur :

Springer


Collection :

Unsupervised and Semi-Supervised Learning

Paru le : 2022-05-19

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
126,59

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book focuses on recent advances, approaches, theories, and applications related Hidden Markov Models (HMMs). In particular, the book presents recent inference frameworks and applications that consider HMMs. The authors discuss challenging problems that exist when considering HMMs for a specific task or application, such as estimation or selection, etc. The goal of this volume is to summarize the recent advances and modern approaches related to these problems. The book also reports advances on classic but difficult problems in HMMs such as inference and feature selection and describes real-world applications of HMMs from several domains. The book pertains to researchers and graduate students, who will gain a clear view of recent developments related to HMMs and their applications.
Pages
298 pages
Collection
Unsupervised and Semi-Supervised Learning
Parution
2022-05-19
Marque
Springer
EAN papier
9783030991418
EAN PDF
9783030991425

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
10527 Ko
Prix
126,59 €
EAN EPUB
9783030991425

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
29
Taille du fichier
39844 Ko
Prix
126,59 €