Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

de

,

Éditeur :

Springer


Collection :

Natural Computing Series

Paru le : 2022-06-11

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,14

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.
The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:
Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.



Pages
133 pages
Collection
Natural Computing Series
Parution
2022-06-11
Marque
Springer
EAN papier
9783030969165
EAN PDF
9783030969172

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
3318 Ko
Prix
137,14 €
EAN EPUB
9783030969172

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
10783 Ko
Prix
137,14 €