Handbook of Machine Learning Applications for Genomics

de

,

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2022-06-23

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
252,14

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as  DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a  tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians,  practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.

Pages
218 pages
Collection
Studies in Big Data
Parution
2022-06-23
Marque
Springer
EAN papier
9789811691577
EAN PDF
9789811691584

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
6042 Ko
Prix
252,14 €
EAN EPUB
9789811691584

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
29655 Ko
Prix
252,14 €