Geochemical Mechanics and Deep Neural Network Modeling

Applications to Earthquake Prediction de

Éditeur :

Springer


Collection :

Advances in Geological Science

Paru le : 2022-08-19

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The recent understandings about global earth mechanics are widely based on huge amounts of monitoring data accumulated using global networks of precise seismic stations, satellite monitoring of gravity, very large baseline interferometry, and the Global Positioning System. New discoveries in materials sciences of rocks and minerals and of rock deformation with fluid water in the earth also provide essential information. This book presents recent work on natural geometry, spatial and temporal distribution patterns of various cracks sealed by minerals, and time scales of their crack sealing in the plate boundary. Furthermore, the book includes a challenging investigation of stochastic earthquake prediction testing by means of the updated deep machine learning of a convolutional neural network with multi-labeling of large earthquakes and of the generative autoencoder modeling of global correlated seismicity. Their manifestation in this book contributes to the development of human societyresilient from natural hazards. Presented here are (1) mechanics of natural crack sealing and fluid flow in the plate boundary regions, (2) large-scale permeable convection of the plate boundary, (3) the rapid process of massive extrusion of plate boundary rocks, (4) synchronous satellite gravity and global correlated seismicity, (5) Gaussian network dynamics of global correlated seismicity, and (6) prediction testing of plate boundary earthquakes by machine learning and generative autoencoders.
Pages
274 pages
Collection
Advances in Geological Science
Parution
2022-08-19
Marque
Springer
EAN papier
9789811936586
EAN PDF
9789811936593

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
27
Taille du fichier
13414 Ko
Prix
147,69 €
EAN EPUB
9789811936593

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
27
Taille du fichier
93409 Ko
Prix
147,69 €