Stochastic Exponential Growth and Lattice Gases

Statistical Mechanics of Stochastic Compounding Processes de

Éditeur :

Springer


Collection :

SpringerBriefs in Applied Sciences and Technology

Paru le : 2022-09-01

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The book discusses a class of discrete time stochastic growth processes for which the growth rate is proportional to the exponential of a Gaussian Markov process. These growth processes appear naturally in problems of mathematical finance as discrete time approximations of stochastic volatility models and stochastic interest rates models such as the Black-Derman-Toy and Black-Karasinski models. These processes can be mapped to interacting one-dimensional lattice gases with long-range interactions.
The book gives a detailed discussion of these statistical mechanics models, including new results not available in the literature, and their implication for the stochastic growth models. The statistical mechanics analogy is used to understand observed non-analytic dependence of the Lyapunov exponents of the stochastic growth processes considered, which is related to phase transitions in the lattice gas system. The theoretical results are applied to simulations of financial models and are illustrated with Mathematica code.
The book includes a general introduction to exponential stochastic growth with examples from biology, population dynamics and finance. The presentation does not assume knowledge of mathematical finance. The new results on lattice gases can be read independently of the rest of the book. The book should be useful to practitioners and academics studying the simulation and application of stochastic growth models.
Pages
132 pages
Collection
SpringerBriefs in Applied Sciences and Technology
Parution
2022-09-01
Marque
Springer
EAN papier
9783031111426
EAN PDF
9783031111433

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
3676 Ko
Prix
52,74 €
EAN EPUB
9783031111433

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
12370 Ko
Prix
52,74 €