Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering

de

Éditeur :

Springer


Collection :

Springer Theses

Paru le : 2023-08-28

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
158,24

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncertainties caused by manufacturing imperfections, natural material variations, or unpredictable environmental influences, may lead, in turn, to deviations in operation. This book describes two novel methods for yield (or failure probability) estimation. Both are hybrid methods that combine the accuracy of Monte Carlo with the efficiency of surrogate models. The SC-Hybrid approach uses stochastic collocation and adjoint error indicators. The non-intrusive GPR-Hybrid approach consists of a Gaussian process regression that allows surrogate model updates on the fly. Furthermore, the book proposes an adaptive Newton-Monte-Carlo (Newton-MC) method for efficient yield optimization. In turn, to solve optimization problems with mixed gradient information, two novel Hermite-type optimization methods are described. All the proposed methods have been numerically evaluated on two benchmark problems, such as a rectangular waveguide and a permanent magnet synchronous machine. Results showed that the new methods can significantly reduce the computational effort of yield estimation, and of single- and multi-objective yield optimization under uncertainty. All in all, this book presents novel strategies for quantification of uncertainty and optimization under uncertainty, with practical details to improve the design of electrotechnical devices, yet the methods can be used for any design process affected by uncertainties. 

Pages
153 pages
Collection
Springer Theses
Parution
2023-08-28
Marque
Springer
EAN papier
9783031370182
EAN PDF
9783031370199

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
2929 Ko
Prix
158,24 €
EAN EPUB
9783031370199

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
16015 Ko
Prix
158,24 €