Machine Learning Applications in Industrial Solid Ash

de

, ,

Éditeur :

Elsevier Science


Paru le : 2023-12-01

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈 ebook sans DRM
Lecture en ligne (streaming)
179,35

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
Offering the ability to process large or complex datasets, machine learning (ML) holds huge potential to reshape the whole status for solid ash management and recycling. Machine Learning for Solid Ash Management and Recycling is, as far as the author knows, the first published book about ML in solid ash management and recycling. This book highlights fundamental knowledge and recent advances in this topic, offering readers new insight into how these tools can be utilized to enhance their own work. The reference begins with fundamentals in solid ash, covering the status of solid ash generation and management. The book moves on to foundational knowledge on ML in solid ash management, which provides a brief introduction of ML for solid ash applications. The reference then goes on to discuss ML approaches currently used to address problems in solid ash management and recycling, including solid ash generation, clustering analysis, origin identification, reactivity prediction, leaching potential modelling and metal recovery evaluation, etc. Finally, potential future trends and challenges in the field are discussed. - Helps readers increase their existing knowledge on data mining and ML - Teaches how to apply ML techniques that work best in solid ash management and recycling through providing illustrative examples and complex practice solutions - Provides an accessible introduction to the current state and future possibilities for ML in solid ash management and recycling
Pages
270 pages
Collection
n.c
Parution
2023-12-01
Marque
Elsevier Science
EAN papier
9780443155246
EAN PDF
9780443155253

Informations sur l'ebook
Nombre pages copiables
27
Nombre pages imprimables
27
Taille du fichier
8069 Ko
Prix
179,35 €
EAN EPUB SANS DRM
9780443155253

Informations sur l'ebook
Prix
179,35 €

Suggestions personnalisées