Model-Oriented Design of Experiments

de

,

Éditeur :

Springer


Collection :

Lecture Notes in Statistics

Paru le : 2024-12-26

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book presents the basic ideas of statistical methods in the design of optimal experiments. This new edition now includes sections on design techniques based on the elemental Fisher information matrices (as opposed to Pearson information/moment matrices), allowing a seamless extension of the design techniques to inferential problems where the shape of distributions is essential for optimal design construction. Topics include designs for nonlinear models, models with random parameters and models with correlated observations, designs for model discrimination and misspecified (contaminated) models, and designs in functional spaces.
The authors avoid technical details, assuming a moderate background in calculus, matrix algebra, and statistics. In many places, however, suggestions are made as to how the ideas presented in this book can be extended and elaborated for use in real scientific research and practical engineering problems.
Pages
131 pages
Collection
Lecture Notes in Statistics
Parution
2024-12-26
Marque
Springer
EAN papier
9781071643013
EAN PDF
9781071643020

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
2181 Ko
Prix
94,94 €
EAN EPUB
9781071643020

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
13
Taille du fichier
9226 Ko
Prix
94,94 €