Navigating Molecular Networks

de

Éditeur :

Springer


Collection :

SpringerBriefs in Materials

Paru le : 2025-01-22

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book delves into the foundational principles governing the treatment of molecular networks and "chemical space"—the comprehensive domain encompassing all physically achievable molecules—from the perspectives of vector space, graph theory, and data science. It explores similarity kernels, network measures, spectral graph theory, and random matrix theory, weaving intriguing connections between these diverse subjects. Notably, it emphasizes the visualization of molecular networks. The exploration continues by delving into contemporary generative deep learning models, increasingly pivotal in the pursuit of new materials possessing specific properties, showcasing some of the most compelling advancements in this field. Concluding with a discussion on the meanings of discovery, creativity, and the role of artificial intelligence (AI) therein.
Its primary audience comprises senior undergraduate and graduate students specializing in physics, chemistry, and materials science. Additionally, it caters to those interested in the potential transformation of material discovery through computational, network, AI, and machine learning (ML) methodologies.
Pages
114 pages
Collection
SpringerBriefs in Materials
Parution
2025-01-22
Marque
Springer
EAN papier
9783031762895
EAN PDF
9783031762901

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
4516 Ko
Prix
52,74 €
EAN EPUB
9783031762901

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
11
Taille du fichier
11407 Ko
Prix
52,74 €