Automated Detection of Media Bias

From the Conceptualization of Media Bias to its Computational Classification de

Éditeur :

Springer Vieweg


Paru le : 2025-06-04

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
Gratuit

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This Open Access book explores the automated identification of media bias, particularly focusing on bias by word choice in digital media. The increasing prevalence of digital information presents opportunities and challenges for analyzing language, with cultural, geographic, and contextual factors shaping how content is portrayed. Despite the interdisciplinary nature of media bias research across fields like linguistics, psychology, and computer science, existing work often tackles the problem from limited perspectives, lacking comprehensive frameworks and reliable datasets. The book aims to advance the field by addressing these gaps and proposing a systematic approach to media bias detection. It develops feature-based and deep-learning approaches for automated bias detection, including a BERT-based model and MAGPIE, a multi-task learning model. These methods demonstrate improved performance on established benchmarks, showcasing the potential of deep learning in detecting media bias. Finally, the author addresses the practical applications of automated bias detection, such as enhancing news reading with forewarning messages, text annotations, and political classifiers, and examines the impact of bias on social media engagement.
Pages
246 pages
Collection
n.c
Parution
2025-06-04
Marque
Springer Vieweg
EAN papier
9783658477974
EAN PDF
9783658477981

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
24
Taille du fichier
11295 Ko
Prix
0,00 €
EAN EPUB
9783658477981

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
24
Taille du fichier
8212 Ko
Prix
0,00 €

Suggestions personnalisées