Machine Learning Technologies on Energy Economics and Finance

Energy and Sustainable Analytics, Volume 1 de

,

Éditeur :

Springer


Paru le : 2025-07-25

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
179,34

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book explores the latest innovations in energy economics and finance, with a particular focus on the role of machine learning algorithms in advancing the energy sector.
It examines key factors shaping this field, including market structures, regulatory frameworks, environmental impacts, and the dynamics of the global energy market. It discusses the critical application of machine learning (ML) in energy financing, introducing predictive tools for forecasting energy prices across various sectors—such as crude oil, electricity, fuelwood, solar, and natural gas. It also addresses how ML can predict investor behavior and assess the efficiency of energy markets, with a focus on both the opportunities and challenges in renewable energy and energy finance.
This book serves as a comprehensive guide for academics, practitioners, financial managers, stakeholders, government officials, and policymakers who seek strategies to enhance energy systems, reduce costs and uncertainties, and optimize revenue for economic growth. This is the first volume of a two-volume set.
Pages
332 pages
Collection
n.c
Parution
2025-07-25
Marque
Springer
EAN papier
9783031948619
EAN PDF
9783031948626

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
42015 Ko
Prix
179,34 €
EAN EPUB
9783031948626

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
28170 Ko
Prix
179,34 €

Suggestions personnalisées