Machine Learning Techniques for Gait Biometric Recognition

Using the Ground Reaction Force de

, ,

Éditeur :

Springer


Paru le : 2016-02-04

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF.



This book
·         introduces novel machine-learning-based temporal normalization techniques
·         bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition·         provides detailed discussions of key research challenges and open research issues in gait biometrics recognition
·         compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear
Pages
223 pages
Collection
n.c
Parution
2016-02-04
Marque
Springer
EAN papier
9783319290867
EAN PDF
9783319290881

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
5366 Ko
Prix
52,74 €
EAN EPUB
9783319290881

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
3308 Ko
Prix
52,74 €

Suggestions personnalisées