Real time deforestation detection using ANN and Satellite images

The Amazon Rainforest study case de

, , ,

Éditeur :

Springer


Collection :

SpringerBriefs in Computer Science

Paru le : 2015-04-25

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not been solved yet. Thus, the present article provides a theoretical basis and elaboration of practical use of neural networks and satellite images to combat illegal deforestation.
Pages
67 pages
Collection
SpringerBriefs in Computer Science
Parution
2015-04-25
Marque
Springer
EAN papier
9783319157405
EAN PDF
9783319157412

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
6
Taille du fichier
2765 Ko
Prix
52,74 €
EAN EPUB
9783319157412

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
6
Taille du fichier
1935 Ko
Prix
52,74 €