Transparent Data Mining for Big and Small Data

de

, ,

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2017-05-09

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,14

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.
As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.
Pages
215 pages
Collection
Studies in Big Data
Parution
2017-05-09
Marque
Springer
EAN papier
9783319540238
EAN PDF
9783319540245

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
3502 Ko
Prix
137,14 €
EAN EPUB
9783319540245

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
21
Taille du fichier
1485 Ko
Prix
137,14 €