Modern Algorithms of Cluster Analysis

de

,

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2017-12-29

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
179,34

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc.
 
The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem.
 
Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented.
 
In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection.


Pages
421 pages
Collection
Studies in Big Data
Parution
2017-12-29
Marque
Springer
EAN papier
9783319693071
EAN PDF
9783319693088

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
42
Taille du fichier
7270 Ko
Prix
179,34 €