Big Data Processing Using Spark in Cloud

de

, , ,

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2018-06-16

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data’s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientistsworking on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.


Pages
264 pages
Collection
Studies in Big Data
Parution
2018-06-16
Marque
Springer
EAN papier
9789811305498
EAN PDF
9789811305504

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
8847 Ko
Prix
94,94 €
EAN EPUB
9789811305504

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
4526 Ko
Prix
94,94 €