Learning from Data Streams in Evolving Environments

Methods and Applications de

Éditeur :

Springer


Collection :

Studies in Big Data

Paru le : 2018-07-28

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpret data streams in non-stationary environments. The book includes the required notions, definitions, and background to understand the problem of learning from data streams in non-stationary environments and synthesizes the state-of-the-art in the domain, discussing advanced aspects and concepts and presenting open problems and future challenges in this field.
Provides multiple examples to facilitate the understanding data streams in non-stationary environments;
Presents several application cases to show how the methods solve different real world problems;
Discusses the links between methods to help stimulate new research and application directions.



Pages
317 pages
Collection
Studies in Big Data
Parution
2018-07-28
Marque
Springer
EAN papier
9783319898025
EAN PDF
9783319898032

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
31
Taille du fichier
9748 Ko
Prix
94,94 €
EAN EPUB
9783319898032

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
31
Taille du fichier
36086 Ko
Prix
94,94 €