Data-Driven Prediction for Industrial Processes and Their Applications

de

, ,

Éditeur :

Springer


Collection :

Information Fusion and Data Science

Paru le : 2018-08-20

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
126,59

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals withinthe machine learning and data analysis and mining communities.
Pages
443 pages
Collection
Information Fusion and Data Science
Parution
2018-08-20
Marque
Springer
EAN papier
9783319940502
EAN PDF
9783319940519

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
44
Taille du fichier
16312 Ko
Prix
126,59 €
EAN EPUB
9783319940519

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
44
Taille du fichier
65147 Ko
Prix
126,59 €