Clustering Methods for Big Data Analytics

Techniques, Toolboxes and Applications de

,

Éditeur :

Springer


Collection :

Unsupervised and Semi-Supervised Learning

Paru le : 2018-10-27

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Pages
187 pages
Collection
Unsupervised and Semi-Supervised Learning
Parution
2018-10-27
Marque
Springer
EAN papier
9783319978635
EAN PDF
9783319978642

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
18
Taille du fichier
6533 Ko
Prix
147,69 €
EAN EPUB
9783319978642

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
18
Taille du fichier
14213 Ko
Prix
147,69 €