Learning Representation for Multi-View Data Analysis

Models and Applications de

, ,

Éditeur :

Springer


Collection :

Advanced Information and Knowledge Processing

Paru le : 2018-12-06

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
126,59

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers’ understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal. A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.



Pages
268 pages
Collection
Advanced Information and Knowledge Processing
Parution
2018-12-06
Marque
Springer
EAN papier
9783030007331
EAN PDF
9783030007348

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
8172 Ko
Prix
126,59 €
EAN EPUB
9783030007348

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
26
Taille du fichier
29635 Ko
Prix
126,59 €